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Abstract: In this paper, an approach to computing the scattering
matrix of a two-dimensional lossless network with two elements is first
presented. Then, three examples are given to show how an incom-
mensurate line network is realized. After that, recurrence formalas for
calculating the scattering parameters of n cascaded two-dimensional
networks are derived. Finally, to exhibit the outstanding merits of the
new approach, a broadband double matching incommensurate line net-
work is synthesized.

1 Introduction

In recent years, important results have been published treating sys-
tems with commensurate lines [1-2]. However, few papers have dealt
with the synthesis of incommensurate line networks, except for the
paper written by Kinariwala [3]. Though he has shown that an ex-
ponential transformation can often lead to a more efficient synthesis
of a transfer function realizable by cascaded incommensurate lines, no
method was provided to achieve the physically realizable transfer func-
tion. This problem existed also in the papers [4-6] for handling networks
having both lumped elements and commensurate lines. So far many el-
egant theoretical results have been obtained but as yet no practical em-
bodiment of these ideas is available for design purpose. The major dif-
ficulty is that no general method has been found to achieve a physically
realizable multivariable transfer function. In order to attach this prob-
lem, we consider first the scattering parameters of a two-dimensional
lossless 2-port network with only two elements, because one can always
divide a cascaded multivariable network into several subnetworks, each
of them having two complex frequency variables and containing only
two elements. By investigation, we found that general expressions for
the physically realizable scattering parameters of such subnetwork can
be achieved in terms of the unitary property of scattering matrix of a
lossless network. Therefore, a typical class of cascaded incommensu-
rate line networks having 2n independent complex frequency variables
XAi(i = 1,2,-++,2n) can be realized by synthesizing the scattering pa-
rameters of each subnetwork.

In this paper, the relations between the coefficients of numerator
and denominator of scattering parameters of a two-dimensional lossless
network having only two elements are first presented. Then, several
examples are given to show how the network is realized. After that, re-
currence formulas for calculating the scattering parameters of an incom-
mensurate line network built by n subnetworks in cascade are derived.
To exhibit the outstanding merits of the new method, a broadband
double matching incommensurate line network is finally synthesized.

2 The scattering matrix of a two-dimen-
sional lossless network with two elements

First assume that a 2-port network N is passive, lossless, and recip-
rocal. Then, as a natural extension of theorem, 1 mentioned in [2], the
following theorem for two-variable bounded scattering matrix is given
by referring to [6].

Theorem 1; The scattering matrix S(,\l,/\z) represents a lossless
structure in both A; and A, domain if and only if
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S(A1, A2) is bounded real when A and A, are real.

2. S(A1, Az) is holomorphic in Re(A1) > 0 and Re(A;) > 0. (Ex-
cept for a possible branch point pair of order 2 at A\; = *1
and/or Ay = 1, i.e., a factor /1~ A2 and/or /1 — AZ.

3. I—5(A1,22)5()1, Az) is nonnegative definite Re();) > 0 and
Re(Az) > 0.

4. S(M,Az) is paraunity almost everywhere on Re(A;) = 0
and RC(AQ) = 0. Thus s(jﬂl,]ﬂz)s*(]ﬂl,]ﬂg) =1Tor
S(A1,22)87 (<A1, =X2) = I where Q3 = Im(M),Q; =
Im(A;) are the imaginary parts of Ay and ), respectively.
()" means complex conjugate, ( )T, transpose, and ( - )=
(( )*)T. I is the identity matrix.

Now we consider a network N having only two elements and being of
two-dimensions, i.e., one element corresponding to A; and the other to
Az. Then, its scattering parameters, s;; (A1, Az), satisfying the condition
of Theorem 1 can be written in general as

h(A1,A2) Ry hadi +hgds + hadiAg

AL Ag) = = ) 1
s11(M, Aa) g(A1,Az) g1+ g2Ar +gahs +gah s (12)
Aty A
$12(A1, Az) = 821(A1, A2) = ﬁ,\—:’x;%): (1b)
h*
822(A1, A2) = —}]i* X R (1c)

where f* = f(—A1, =A2); h* = A(=X1, —A2); h, and g.(i = 1,2, 3,4) are
the coefficients of numerator and denominator polynomials, h(A1, A2)
and g(A1, Az), of s11; f(A1, A2) are the numerator of s32. Let’s consider
the following four cases:

(a) The network N comprises a length of transmission line (sim-
ply called unit element (UE) and a low-pass element, such as a series
short-circuited stub (or inductance), or a shunt open-circuited stub (or
capacitance). In this case, f(A1, A2) can be represented as

FArsd2) = /1= A3, @)

where A, (i = 1,2) are defined as Richards’ variables [1] for distributed
elements or as normal frequency variables for lumped elements, and the
UE is assumed to be the function of A;. Thus, in terms of paraunity
property of scattering matrix of a lossless 2-port, i.e.

511(A1, Az)s11 (= A1, —A2) + s12( A1, Az)sia(—A, —A2) =1, (3)

the relations between h, and g, can be found as shown below

gi=1, gza=lha|, gs=+/14+h3 ga=|hgf 4)

Note that h; = 0 holds for lowpass network having no ideal trans-
former. If hy and hy are known, ha will be fixed and can be computed

from hy and hy via
h3 — b3

= 2halha)’

(b) The network N comprises two UEs. In such a case, one has

Fda) = /122 x 4/1- A5, (6)

(5)

3

1993 TEEE MTT-S Digest




where both UEs are the functions of A; and Az, respectively. Similarly,
one can deduce g, from h; via

g1=1, yzz\/l-l-h%, g3=1/1+h, ga=4/1+h} (1)

in which Ay = 0 because of the situation similar to the case (a) and
ha = h2gs + ga|h4] (8a)
or
h3 = hags — g2]ha|. (8b)

It can be seen that when h; and h4 are specified, b3 will be determined
by (8a) or (8b).

(c) The network N comprises a UE and a high-pass element, such as
a series open-circuited stub (or capacitance), or a shunt short-circuited
stub (or inductance). Then, f(A1, Az) is specified by

f(Al,Az) = /\1\/1—/\%. (9)

Under these assumptions, g, can be derived in terms of (3) as the
functions of h,, i.e.

g1=Ih1], g2=1, gs=lhs|, ga=14/1+13 (10)

where h; = 0 due to the situation similar to the case (a) and hy is
related with h; and kg by
B2 h2
hy= 13, 11
47 2k ksl (11)

(d) The network N comprises only two types of elements, i.e. short-
and open-circuited stubs (or inductance and capacitance). One is re-
lated to A; and the other to A;. In this case, lossy transformation
technigue (LTT) [7] can be employed to achieve the unit normalized
scattering matrix, S, of the network N from the corresponding unit
normalized scattering matrix, 5, of a lumped lossless reference network
M and vice-versa. That is,

S(M,A2) = [(VZ Zo(I+8)— (1= SNV 21 Z:(I+5)+(I-S)] 77, (120)

50) = [T +8) = VZ1Zs(I - ST + S) + V21 2:(I — S)7*. (12b)

In (12b), A = \/Z;/Z; and I is the identity matrix. The entries of 5(%)
are supposed to be in the form
_a(d) _artad+ azA? + -4 ap 1 A

F3 =’ = 13
1(A) 50 By F bah + beAe + -t bag A (13a)

512(0) = 52 (3) = e(A)/B(A) = X /b(), (130)
52 (2) = (1) a(=2)/5(N), (13¢)

where n specifies the maximum number of reactive elements in M. a,
and b;(i = 1,2,---,n+ 1) are the coefficients of numerator and denom-
inator polynomials, a(A) and b(}), of §3;. The numerator polynomial,
(), of 312 is simply represented by A*. It implies that the network M
is assumed to have k high-pass elements and n — k lowpass elements.

Also, Z; and Z, in (12) represent the frequency-dependent parts of
impedances of two types of the network elements, respectively. Their
impedances can be simply written in the form

z1 =721 and zs =77y, (14a, 14b)

where r, is real positive multiplicative constant. In this case, four
corresponding combinations for Z; and Z; can be considered, i.e.

a) Z1 - Al, Zz = /\2 (150.)
b) Zi=X, Zz=1/A (153)
c) Z1 = /\2, Zz = 1//\1 (156)
d) Z1 = 1/’\27 Zz = 1//\1 (15d)

Note that although in this section we only consider the network
M(i.e. N) having 2 elements(n = 2), n can be any integer! It means
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that the network N can comprise any large number of the two types
of the elements. Furthermore, from (15), we know that four different
types of the network N can be synthesized from S(A;, Az) by replacing
Z; and Z; in (12a) by one of the four combinations for Z, and Z,,
respectively. Finally, in comparison with the method developed by
Rhodes and Marston [8], it is apparent that the LTT is considerably
simplified and easy to handle.

3 Realization of scattering matrix of the
two-dimensional network

Similar to the method proposed by Cartlin [2] and Saito [9], the two-
dimensional network N mentioned above can be obtained by realizing
its 811(A1, A2) in terms of the following theorem.

Theorem 2: Given a rational input reflection factor s11{A1, A2}, (Zo
normalization) satisfying either the lossless or bounded real (BR) con-
ditions. Then if s11 (A1, 1) =constant independent of A;, a UE related
to Az can be extracted whose characteristic impedance is given by

1 + 311(/\1, 1)

Zot = Zo———F—t. 15
Ot ° 1- 811(/\1, 1) ( )
The rational input reflection factor of the remainder network
s11(A1, A2) — A1, 1 1+ A
N

X
1- sll(Al; /\2)811(/\1, 1) 1-— A2

is also lossless (or BR if originally so). Otherwise, one can repeat
above procedure with respect to A; for the case (b) or extract a short-
or open-circuited stub (related to A;) for the cases (a) or (c).

To clearly demonstrate the theorem, several examples are given as
below.

Example 1: Assume that the network N has two UEs and its f(A1, Az)
is expressed as (6). If k2 and k4 are chosen to be 0.75 and -0.4167, re-
spectively, the unit normalized scattering parameter s11(A1, Az) of the
network N can then be obtained by means of (7) and (8) as

0.75A1 + 1.3333A2 — 0.4167A1 A2

A1, A2) =
s11 (1, Az) 1+ 1.25X; + 1.6667A; + 1.0833A; \2

(18a)
or
s11(MsAg) = 0.75A1 +0.2917X, — 0.4167TA1 )2
P T 11250 4 104172, + 1.08330
For (18a), since s11(A1, A2)|a,=1 = 1/3, one knows that a UE re-
lated to A; can be realized. The characteristic impedance of the UE is
calculated by

(18b)

14 313(A1,Az)

Z =7
ot °1- s11(A1, Az)

IA;:I = 27

where Zy = 1 because of unit normalization. After extracting the
cascading UE out of the network N, the input reflection factor of the
remainder network normalized with respect to Zg¢; can be achieved in
accordance with (17) as

—1+42.3333);
3+ 3.6667;

Moreover, another UE related to A; can be easily realized by the sim-
ilar procedure. The value of its characteristic impedance Zg ¢z is 3.
Finally, the input reflection factor, 83, of the remainder network nor-
malized to Zo s is known (s; = —0.5) and supposed unit normalized
load resistance Ry, can be calculated via

81 (/\2) =

Ry = Zo,tz-i—i_—sz =1.
— 5,

This proves that the numerical calculation completed above is correct.
Because the scattering parameter s1; is unit normalized, the value of
the load resistance Ry terminated on the output port of the network
N should be 1.

Similarly, the network N can be synthesized by realizing sy, of
(18b). However, the UE first extracted is related to A; rather than A;.
The networks thus synthesized are shown in Fig.1 (a) and (b).



Example 2: Let’s assume that the network N consists of a UE and
a low-pass element. Then, according to the case (a} described in about
section, we may obtain the 311 of the network N from the specified h,

as
3/\1 4+ 0.4167TA3 — 2124

14+ 3A1 +1.0833%2 + 2X; A5
In this example, hy and hq are first assumed to be 3 and -2, respectively,
whereas hy = 0 and hs = 0.4167 by (5). First of all, we let A; approach
to infinity and see if s11(00, Az} is equal to +1 or not, because +1
corresponds to a series short-circuited stub (or inductance) and -1 to
a shunt open-circuited stub (or capacitance). Nevertheless, it can be
easily verified that the first element should be UE with its characteristic
impedance

811.(A1, A2) = (19a)

1+811(/\1,1) _ 1+0.2 _
1—-811(A1,1) - 1—0.2 -

Zos1 = Zo 1.5.

Then, the s; of the remainder network normalized to Zos1 can be

obtained as
~14 12X

54 12X
It can be seen by letting A; approach to infinity that the next element
is a series short-circuited stub (or inductance). Its value can be easily
achieved by calculating the corresponding input impedance from s,
via

sl(Al) =

Thus, Zo,sn3, the characteristic impedance of the series short-circuited
stub is equal to 6. Finally, it is verified from R; = 1 that above
numerical computation is correct!

If h, and h4 are assumed to be -2 and -3, respectively, one similarly
has

—2A1 + 0.4167XA; — 3A1A2
B A oy v T Y W v (198)

By A1 — o0, we find that s11(00, Az) = —1. It implies that one can
first take a shunt open-circuited stub (or capacitance) out. Similar to
the normal synthesis procedure, Z op1, the characteristic impedance of
the shunt open-circnited stub is obtained and equal to 0.25. Then, a
UE with characteristic impedance Zo3(= 1.5) can be extracted. The
two networks thus obtained are represented by Fig.2 (a) and (b), re-
spectively.

Example 3: If the network N is assumed to comprise a UE and a
high-pass element. Then, in accordance with the case (c) we have

242525 — 0.225A1 A2

sl de) = o T

(21a)

and 2.5 — 2)5 + 0.225),A
5 —2A2+ 0. 1A2
() = g o T Loz (219)
under the assumpation of Ay = 2 and hs = 2.5 for the former equation
and h; = 2.5 and hz = —2 for the later one, respectively.

When A1 = 0, s31(A1, Az) of (21a) is equal to 1. It implies that
a series open-circuited stub (or capacitance) should be first extracted
whose characteristic impedance Z; .1 equals to 4. In consequence, a
UE related to A; can then be obtained. Its Zg (= 0.8) is similazly
calculated by the procedure as mentioned above.

On the other hand, it is found that a UE related to A; should be first
extracted when realizing $11(A1, A2) of (21b). After extracting the UE
with characteristic impedance Zo ;1 = 1.25, a series open-circuited stub
(or capacitance) can be easily extracted, whereas the corresponding
characteristic impedance Zo,op2 = 0.5. The networks thus realized with
respect to s11(A1, Az) of (21a) and (21b) are shown in Fig.3 (a) and (b),
respectively.

It should be emphasized that with different choices of h;, four dif-
ferent topologies can be synthesized for the cases (a) and (c) and two
different topologies for the case (k). As to the case (d), it is apparent
that there is a one-to-one correspondance between a one-variable net-
work M and two-variable network N. Though Rhodes and Marston [8]
had already discussed certain problems associated with the synthesis of
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the two-variable network N, our method is quite straightforward and
simple by using the LTT.

4 Synthesis of multidimensional network
constituted by cascaded two-dimensional
networks

We now consider the cascade connection of n lossless two-dimensional
networks Ni(k = 1,2,--+,n) and denote by fi, hx, g the correspond-
ing polynomials of the scattering parameters s,, i of Ny as represented

(k)

by (1). By calculating the scattering parameters, s,,’, of the network

2y ?
N®) constructed by k networks Ni(1=1,2,---,k) in cascade as shown
by Fig.4, one obtains recurrence formulas for the corresponding poly-

nomials of s,(.;)

f(k) - f(k—l)fk, (220)

h(k) — [f(k—-l)/(f(k—1))*](g(k—1))*hk + h(k—l)yk, (225)

g(k) - [f(k'l)/(f(k_l))*](h(k"1))*hk +g(’°_1)gk, (226)

fW=f, W=n, V=g, (22d)
(k=12,3,---,n)

where fi, hz, and g can be determined in accordance with the formulas
given in section 2 for one of the four cases. In such a case, the scatter-
ing parameter, 3,;, of the cascaded 2-ports can be achieved by simply
replacing f, h, and g of (1} by F™), h(™) and ¢ of (22), respectively.

As an example, a lossless incommensurate line network N inserted
between complex generator and load impedances, i.e. Zg and Zp is
synthesized. Its {ransducer power gain (TPG) can be computed by [7]

T= (1~ {Ta[*)|sa’(1 = [Tz[*)
|1 — I‘Gsu|2|1 - I‘erlz ’

(23)
where I'g and I’z are the unit normalized reflection coefficients of the
generator and load. They are related to Zg and Z;, by

Zg —1 Zp—1

g = Ty = 24
T Ze+1 Tzl (24)
respectively. T'; is given by
ssule
T2= —_ 25
2= 822+ T_suTa (25)

with s,;(%,7 = 1,2) being the entries of the scattering matrix S of the
network N.

The network N is composed of two cascaded subnetworks N; and
N;. Each of them is assumed to have a UE and a low-pass element as
described in the case (a). By optimizing T of (23), their unit normalized
s11,%x(k = 1,2) can then obtained as

0.512A1 — 1.4818)A; — 1.674); A,
1+ 0.512x1 + 178772 + 1.674A1 22

811,01 =

and
0.0493X3 — 3.07747A4 + 0.3115 34

11,2 = 17770.04934); + 3.23587hs + 0.3115)ghs "

Note that A,, as the Richards’ variables are represented as

i = tanh(jwm), (26)

where 7; are the delay lengths of lossless TEM lines (i.e. UEs) and w
the normalized angular frequency.

By analogy with the example 2, the topologies of the subnetworks
N, and N, (see Fig.5(a)) can be obtained by realizing their s11,1 and
811,32, respectively. .

From Fig.5(a) one can see that the scries short-circuited stubs Zy sp2
and Zg ;x5 are in series with each other and their delay lengths (2 and
73) are approximately identical. Therefore, they can be combined as
one series short-circuited stub as represented by Fig.5(b). The TPG



of Fig.5(b) is shown in Fig.6. It is evident in comparison with the
performance of example 1B given in [10] that the TPG of the incom-
mensurate line network thus designed is better than that of lumped
reactance network in both pass (0 < w < 1) and stop (1 < w < 1.4)
regions. Furthermore, no ideal transformer is needed in our example.
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Figure 1: The networks comprising two UEs
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Figure 2: The networks consisting of a UE and a low-pass element
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Figure 3: The networks having a UE and a high-pass element
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Figure 4: The cascade connection of n lossless two-variable
networks Ni(k =1,2,---,n)
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Fig.5 (a) The topologies of subnetworks N; and N
(b) Incommensurate line network design for example in section 4
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Fig.6 Incommensurate line network and its insertion loss (+=) comparied with that of [10] (—)
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