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Abstract: In this paper, an approach to computing the scattering

matrix of a two-dimensional lossless network with two elements is first

presented. Then, three examples are given to show how an incom-

mensurate line network is realized. After that, recurrence formalas for

calculating the scattering parameters of n cascaded two-dimensional

networks are derived. Finally, to exhibit the outstanding merits of the

new approach, abroadband double matching incommensurate line net-

work is synthesized.

1 Introduction

In recent years, important results have been published treating sys-

terns with commensurate lines [1-2]. However, few papers have dealt

with the synthesis of incommensurate line networks, except for the

paper written by K1nariwala [3]. Though he has shown that an ex-

ponential transformation can often lead to a more efficient synthesis

of a transfer function refllzable by cascaded incommensurate lines, no

method was provided to achieve the physically reahzable transfer func-

tion. TMsproblem efisted alsointhe papers [4-6] forhandhngnetworks

having both lumped elements and commensurate lines. So farmanyel-

egant theoretical results have been obtained but as yet no practical em-

bodlment of these ideas isavailable for design purpose. Themajordlf-

ficulty is that no general method has been found to achieve a physically

reahzable rnultivariabl etransferfunction. In order to attach this prob-

lem, we consider first the scattering parameters ofatwo-dimensional

lossless 2-port network with only two elements, because one can always

dlvidea c=caded multivariable network into several subnetworks, each

of them having two complex frequency variables and containing only

two elements. By investigation, we found that general expressions for

thephysically reJ1zable scattering parameters ofsuchsubnetwork can

beachleved in terms of the unitary property ofscattering matrix ofa

lossless network. Therefore, a typical class of cascaded incommensu-

rate line networks having 2n independent complex frequency variables

A{(i= 1,2,..., 2n) can be realized by synthesizing the scattering pa-

rameters of each subnetwork.

In this paper, the relations between the coefficients of numerator

anddenominator ofscattering parameters ofatwo-dlmensionrd lossless

network having only two elements are first presented. Then, several

examples are given toshowhow thenetwork isreafized. After that, re-

currence formulas for calculating the scattering parameters of an incom-

mensurate line network built by n subnetworks in cascade are derived.

To exhibit the outstanding merits of the new method, a broadband

double matching incommensurate line network is finally synthesized.

2 The scattering matrix of a two-dimen-

sional lossless network with two elements

First assume that a 2-port network N is passive, lossless, and recip-

rocal. Then, as a natural extensiOn Of theOrem. 1 mentiOned in [2], the

following theorem for two-variable bounded scattering matrix is given

by refer~ng to [6].

Theorem 1: The scattering matrix S(A1, Az) represents a lossless

structure in both Al and AZ domain if and only if
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S(A1, Az) is bounded real when al and AZ are real.

S(AI, ~z) is homomorphic in Re(Al) >0 and Re(Aa) >0. (Ex-

cept for a possible branch point pair of order 2 at Al = +1

andlor AZ = +1, i.e., a factor ~ andjor ~.

1 – S(A1, ~2)$(,11, ~a) is nonnegative definite Re(A1 ) >0 and

R.(A2) >0.

S(A1, Az) is paraunity almost everywhere on R.(A, 1 = O.,-,
and R.(A2) = O. Thus S(jflI, jQ2)$(jQI, j02) = I or

S(AI, Az)# (–AI, –Az) = 1 where fll = Itn(Al), flz =

Itrt(A2) are the imaginary parts of Al and A2, respectively.

( )* means complex conjugate, ( )~, transpose, and ( - ) =

(( )*)T. ~ is the identity matrix.
Now we consider a network N having only two elements and being of

two-dimensions, i.e., one element corresponding to AI and the other to

Az. Then, its scattering parameters, ~ij (AI, A2), satisfying the condition

of Theorem 1 can be written in generrd as

h(~l, Aa) hl + h2,1* + h3& + hqA*&
511(AI, A2) = — =

9(~1 ! ~z) 91 + 92k + 93A2 + 94A1A2 ‘
(la)

$,,(k,a,) = SZl(-h)h) = -! (lb)

(lC)

where ~ = f(—~l, —Az); h“ = h(—~l, —A2);h, and g,(i = 1, 2, 3, 4) are

the coefficients of numerator and denominator polynomials, is(~l, Az)

and g(~l, ~z), of Sll; f(al, Az) are the numerator of SIZ. Let’s consider

the following four cases:

(a) The network IV comprises a length of transmission line (sim-

ply called tinit element (UE) and a low-pass element, such as a series

short-circuited stub (or inductance), or a shunt open-circuited stub (or

capacitance). In this case, f(~l, Az) can be represented as

f(,ll, A2) = ~1 - A;, (2)

where A, (i = 1, 2) are defined as Richards’ variables [1] for distributed

elements or as normal frequency variables for lumped elements, and the

UE is assumed to be the function of AZ. Thus, in terms of paraunity

property of scattering matrix of a lossless 2-pOrt, i.e.

sll(h, J2)311(—A1, —~2) + 512(~1, ~z)slz(—~1, —~z) = 1, (3)

the relations between h, and g, can be found as shown below

91= L 92= l~zl, 9s= ~l+h:, 94 = lh41. (4)

Note that ~1 = Oholds for lowpassnetwork having no ideal trans-

former. If hz and h4 are known, h~ will be fixed and can be computed

m

B,

from hz and h~ via
hi – h:

h8=—
2h21hql “

(5)

(b) The network N comprises two UES. In such a case, one has

f(’l,’z)= G’ @
(6)
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where both UES are the functions of AI and Aj, respectively. Similarly,

one can deduce g, from ha via

g~ = 1, ,,=@%, ,3=J% 94=~, (7)

in which hi = O because of the situation similar to the case (a) and

hs = hzg~ + gzlhAl (8a)

or

hs = hzg~ – g2!p341. (8b)

It can be seen that when hz and h4 are specified, hs will be determined

by (8a) or (8 b).

(c) The network N comprises a UE and a high-pass element, such as

a series open-circuited stub (or capacitance), or a shunt short-circuited

stub (or inductance). Then, j(ai, Az) is specified by

f(A,, A2) = A,~l – A;. (9)

Under these assumptions, g, can be derived in terms of (3) as the

functions of h,, i.e.

gl = Ihll, 92= 1, w= lhsl,

where IJ2 = O due to the situation similar

related with hi and hs by

h; – h:
h4=—

2hllh31 “

g.= ~l+h;, (10)

to the case (a) and h4 is

(11)

(d) The network N comprises only two types of elements, i.e. short-

and open-circuited stubs (or inductance and capacitance). One is re-

lated to Al and the other to Aj. In this case, 10SSY transjorvnatzon

technique (LTT) [7] can be employed to achieve the unit normalized

scattering matrix, S, of the network N from the corresponding unit

normalized scattering matrix, ~, of a lumped lossless reference network

M and vice-versa. That is,

S(-11, AZ) = [V@X(I+s)-(l-s) ][m(I+s)+(I-3)]-’, (12.)

3(A) = [(r+ S) – -(r – S)][(1 + S) + -(~ – S)1”1. (Izb)

In (12b), A = - and 1 is the identity matrix. The entries of ~(a)

are supposed to be in the form

II,(A) = L%(A)= c(A)/b(A) = Ak/b(A), (13b)

E22(A) = (–l)h+la(–A)/b(A), (13C)

where n specifics the maximum number of reactive elements in M. a,

and bi (i = 1, 2, . . . . n + 1) are the coefficients of numerator and denom-

inator polynomials, a(~) and b(A), of S1l. The numerator polynomial,

c(A), of ~Iz is simply represented by Ak. It implies that the network M

is assumed to have k high-pass elements and n — k Iowpass elements.

Also, ZI and 22 in (12) represent the frequency-dependent parts of

impedances of two types of the network elements, respectively. Their

impedances can be simply written in the form

z~ = r’,zl and z~=r, z,, (14a, 14b)

where r, is rerd positive multiplicative constant. In this case, four

corresponding combinations for ZI and Z2 can be considered, i.e.

a) ZI = Al, Z2=A2 (15a)

b) ZI = Al, Z2= l/A2 (15b)

c) ZI = AZ, Z2= I/A, (15C)

d) ZI = 11A2, Zz = IIA1 (15d)

Note that rdthough in this section we only consider the network

Jf(i.e. N) having 2 elements(n = 2), n can be any integer! It means
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that the network N can comprise any large number of the two types

of the elements. Furthermore, from (15), we know that four different

types of the network N can be synthesized from S(AI, A2 ) by replacing

Z1 and Z2 in (12a) by one of the four combinations for Z1 and Z2,

respectively. Finally, in comparison with the method developed by

Rhodes and Marston [8], it is apparent that the LTT is considerably

simplified and eaay to handle.

3 Realization of scattering matrix of the

two-dimensional network

Similar to the method proposed by Carlin [2] and Saito [9], the two-

dimensional network N mentioned above can be obtained by realizing

its Sll (Al, AZ) in terms of the following theorem.

Theorem 2: Given a rational input reflection factor $lI(AI, X2), (ZO

normalization) satisfying either the lossless or bounded real (BR) con-

ditions. Then if SII (JI, 1) =constant independent of Al, a UE related

to ,X2 can be extracted whose characteristic impedance is given by

(15)

The rationrd input reflection factor of the remainder network

Sl(k, A,) =
S11(J1,A2) – S1l(A1, 1) l+A,

1 – S1l(A1, Az)sll(k, 1) ‘l–AZ
(17)

is also lossless (or BR if originally so). Otherwise, one can repeat

above procedure with respect to Al for the case (b) or extract a short-

or open-circuited stub (related to Al) for the cases (a) or (c).

To clearly demonstrate the theorem, several examples are given as

below.

Example 1: Assume that the network N has two UES and its f(,ll, ,lZ)

is expressed aa (6). If kz and h~ are chosen to be 0.75 and -0.4167, re-

spectively, the unit normalized scattering parameter S1l (Al, J2 ) of the

network N can then be obtained by means of (7) and (8) as

0.75A1 + 1.3333~j – 0.4167A1A2
S1l(A1, AZ) =

1 + 1.25A1 + 1.6667A2 + 1.0833A1A2
(18a)

or
0.75AI + 0.Z917~2 – 0.4167A1A2

%l(A1, AZ) =
1 + 1.25A1 + 1.0417A2 + 1.0833A1A2 “

(18b)

For (18a), since SII(J1, ~z)lx,nl = 1/3, one knows that a UE re-

lated to Al can be rer&zed. The characteristic impedance of the UE is

calculated by

Zo,tl= z~1+ S1l(A1, A2)

1 -S1l(A,,AJ”=’ = 2’

where 20 = 1 because of unit normalization. After extracting the

cascading UE out of the network N, the input reflection factor of the

remainder network normalized with respect to Zo,tl can be achieved in

accordance with (17) as

–1 + 2.3333A2
SI (Az) =

3 + 3.6667A2 ‘

Moreover, another UE related to ~z can be easily realized by the sim-

ilar procedure. The value of its characteristic impedance Z0,~2 is 3.

Finally, the input reflection factor, Sz, of the remainder network nor-
malized to Z0,t2 is known (s2 = –0.5) and supposed unit normalized

load resistance RL can be calculated via

1+s2 =1,
RL = Z0,t2—

1–s2

This proves that the numerical calculation completed above is correct.

Because the scattering parameter SII is unit normalized, the value of

the load resistance RL terminated on the output port of the network

N should be 1.

Similarly, the network N can be synthesized by realizing SII of

(18b). However, the UE first extracted is related to A, rather than Al.

The networks thus synthesized are shown in Fig. 1 (a) and (b).



Example 2: Let’s assume that the network N consists of a UE and

a low-psss element. Then, according to the case (a) described in about

section, we may obtain the SII of the network N from the specified h,

az
3AI + 0.4167A2 – 2AIA2

S1l(A1, k) =
1 + 3AI + 1.0833A2 + 2Al& “

(19a)

In thk example, hz and h~ are first assumed to be 3 and -2, respectively,

whereas hl = O and ha = 0.4167 by (5). First of all, we let ,11 approach

to infinity and see if Sll (co, Az) is equrd to +1 or not, because +1

corresponds to a series short-circuited stub (or inductance) and -1 to

a shunt open-circuited stub (or capacitance). Nevertheless, it can be

easily verified that the first element should be UE with its characteristic

impedance

1+811(h, l)_l+o.2 =15Zo,tl= z~1– S1l(A1,1) –G “’

Then, the S1 of the remainder network normalized to Zo,tl can be

obtained as

It can be seen by letting Al approach to infinity that the next element

is a series short-circuited stub (or inductance). Its value can be easily

achieved by calculating the corresponding input impedance from SI,

via

Thus, Zo,,fiz, the characteristic impedance of the series short-circuited

stub is equal to 6. Finally, it is verified from RL = 1 that above

numerical computation is correct!

If hz and h~ are assumed to be -2 and -3, respectively, one similarly

hss
–2AI + 0.4167& – 3AIA2

%l(A1, AZ) =
1 + 2AI + 1.0833A2 + 3~1~2 “

(19b)

By AI + co, we find that SII (co, AZ) = –1. It implies that one can

first take a shunt open-circuited stub (or capacitance) out. Similar to

the normal synthesis procedure, Zo,wl, the characteristic impedance Of

the shunt open-circuited stub is obtained and equsl to 0.25. Then, a

UE with characteristic impedance Zo,tz(= 1.5) can be extracted. The

two networks thns obtained are represented by Fig.2 (a) and (b), re-

spectively.

Example 3: If the network N is assumed to comprise a UE and a

high-pass element. Then, in accordance with the case (c) we have

2 + 2.5& – 0.225AIA2
Sll(k, A2) =

2 + Al + 2.5A2 + 1.025A1A2
(21a)

and
2.5 – 2A2 + 0.225A1A2

.911(A1, AZ) =
2.5 + AI + 2A2 + 1.025A1A2

(21b)

under the .sssumpation of hl = 2 and h~ = 2.5 for the former equation

and hl = 2.5 and h8 = —2 for the later one, respectively.

When Al = O, s1l(A1, AZ) of (21a) is equal to 1. It implies that

a series open-circuited stub (or capacitance) should be first extracted

whose characteristic impedance ZO,WI equals to 4. In consequence, a

UE related to & can then be obtained. Its Zo,t2(= 0.8) is similarly

calculated by the procedure as mentioned above.

On the other hand, it is found that a UE related to Az should be first

extracted when reahzing SII (AI, ~z) of (2 lb). After extracting the UE

with characteristic impedance Zo,tl = 1.25, a series open-circuited stub

(or capacitance) can be easily extracted, whereas the corresponding

characteristic impedance ZO,VZ = 0.5. The networks thus re~ized with

respect to s1l(A1, Az) of (21a) and (21b) are shown in Fig.3 (a) and (b),

respective y.

It should be emphasized that with different choices of h;, four dif-

ferent topologies can be synthesized for the cases (a) and (c) and two

different topologies for the case (b). As to the case (d), it is apparent

that there is a one-tc-one correspondence between a one-variable net-

work J4 and two-variable network N. Though Rhodes and Marston [8]

had already discussed certain problems associated with the synthesis of

the two-variable network N, our method is quite straightforward and

simple by using the LTT.

4 Synthesis of multidimensional network

constituted by cascaded two-dimensional

networks

We now consider the cascade connection ofn Iossless two-dimensional

networks iVk(k = 1,2, . . . , n) and denote by fb, hb, g~ the correspond-

ing polynomials of the scattering parameters S,j,k of Nk as represented

by (l). By calculating the scattering parameters, sj~), of the network

N(k) constructed by k networks NI(J = 1,2,..., k) in cascade as shOwn

by Fig.4, one obtains recurrence formulas for the correspondhg poly-
nomials of s(k)

*J
f(k) = f(k-l)fk, (22a)

h(k) = [f(h-O@-l))*](g( k-l))*hk + h(k-l)gk, (22b)

&) = [f(H/(f(W)*](h( H)*hk + J~-l)gk, (22C)

f(’) = fl, h@) = hl, 9(1) = ~1, (22d)

(k=2,3,..., n)

where fk, hk, and gk can be determined in accordance with the formulas

given in section 2 for one of the four cases. In such a case, the scatter-

ingparameter, S,j, of the cascaded 2-ports can be achieved by simply

replacing f, h, and g of (1) by f(n), h(m) and g(n) of (22), respectively.

As an example, a lossless incommensurate line network N inserted

between complex generator and load impedances, i.e. Z~ and ZL is

synthesized. Its transducer power gain (TPG) can be computed by [7]

~ = (1 – \rG[2)b2112(1 – IFL[2)

[l-r~slll’ll-rzr~p ‘
(23)

where rc and I’L are the unit normalized reflection coefficients of the

generator and load. They are related to ZQ and ZL by

ZG–l
rG. —

z~–1
rL=—

ZG+l’ .z&+l
(24)

respectively. r2 is given by

r2=s22i. e (25)

with s,j (i, j = 1, 2) being the entries of the scattering matrix S Of the

network N.

The network N is composed of two cascaded subnetworks N1 and

Na. Each of them is assumed to have a UE and a low-pass element as

described in the case (a). By optimizing T of (23), their unit normalized

sll,~(k = 1, 2) can then obtained as

sll ~ = 0.512A1 – 1.4818Jz – 1.674AIAz

1 + 0.512A1 + 1.7877A2 + 1.674AIA2

and
0.0493A3 - 3.07747A4 + 0.3115ASA4

S11,2 =
1 + 0.04934A3 + 3.23587JA + 0.3115~z& ‘

Note that A,, as the Richards’ variables are represented as

Ai = tanh(jrmi), (26)

where -q are the delay lengths of lossless TEM lines (i.e. UES) and w

the normahzed angular frequency.

By anrdogy with the example 2, the topologies of the subnetworks

NI and N2 (see Flg.5(a)) can be obtained by realizing their SII,l and

$11,2, respectively.

From Flg.5(a) one can see that the series short-circuited stubs ZII,,hz

and Zo,,h3 are in series with each other and their delay lengths (72 and

73) are approximately identical. Therefore, they can be combined as

one series short-circuited stub as represented by Fig.5(b). The TPG
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of Fig.5(b) is shown in Fig.6. It is evident in comparison with the

performance of example lB given in [10] that the TPG of the incom-

mensurate line network thus designed is better than that of lumped

reactance network in both pass (O < w < 1) and stOp (1 < ~ < 1.4)

regions. Furthermore, no ideal transformer is needed in our example.
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(a) (b)

Figure 1: Thenetworks comprising two UEs

+Q=$’~~
Zo,tl= 1.5 ZO,$hz = 15 ZO,OPI =0.25 Zo,tz=I.5

(a) (b)

Figure2: Thenetworks consisting ofa UEandalow-pws elemel)t

As
~ ~.

ZO,OP1 = 4 Zo,tz = 0,8 Zo,tl = 1.25 ZQP2 = 0.5

(a) (b)

Figure 3: The networks having a UE aud a high-pas element

~— —.—— .——. — —.—.—.—.=

[
Ar(k)

I— —. — ___ .—. . .. ... . . ... ....

Figure 4: The c~cade connection of ~ loSS1eSS tw~variable

networks N~(k = 1,2, . ..)n)

7, = 0.313777 T, = 0.194192

N1 N,

(a)- ““ “ ‘“”” “

Im

Zo,.M = 1.12268
72= 1.1684721

~ds-2zBlQ~ZOZI= 0.305854 ZO,3= 0.1583g5

Fig.5 (a) The topologies of subnetworks NI and N2

(b) Incommensurate line network design for example in section 4
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